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S. N. Vasil'kovskii and V. D. Kurguzov 

In contrast to the methods elucidated in [ 1 ], a method is proposed in this paper for the solution of  problems of  
plane elasticity theory with a crack: directly in terms of  the stresses on the one hand, and on the basis of  a finite-difference 
method on the other. It  should be noted that application of  the method of  finite elements or the method of  finite differ- 
ences is in itself not  so essential since proofs exist for the equivalence of  these two fundamental numerical methods [2, 3] 
for a specially selected approximation, while the use of  displacements or stresses as the desired functions is more essential. 
The formulation of  the problem in stresses is especially useful when the boundary conditions are also given in stresses, and 
it is required to investigate the state of  stress in the domain given. 

Let us consider the plane strain of  a rectangular specimen with an edge crack which is propagated in the domain 
from one of  the lateral vertical boundaries in parallel to the two horizontal sides of  the rectangle. The crack is symmetric 
relative to the upper and lower bases; the loads applied to the outer boundaries of  the specimen are also symmetric; hence 
the crack under consideration is a normal discontinuity crack, and the stress state is characterized by one intensity factor 
K. Because the stresses tend to infinity as the crack nose is approached, it is impossible to use any difference scheme in 
stresses directly to solve the angular problem under consideration. Hence, it is proposed to use the so-called additive 
method of  extracting singularities in combination with a Rice-Cherepanov integral and the organization of an iterative 
process using the stress intensity factor to solve the problem. 

To apply the additive method of  extracting singularities, it is required to have an analytic solution of  some auxiliary 
problem. We may consider as theauxiliary problem, e.g., the problem of tension on a plane with a rectilinear slit along 
the Ox axis. The tensile loads can be applied both within the domain and on the surface of  the slit. The exact (analytic) 
solution q~o for this singular problem is found by complex-variable function theory methods by reduction to the R i e m a n n -  
Hilbert conjugate problem and is represented in [4], for instance. 

In the initial problem we set the intensity factor K equal to the intensity factor K o of  the auxiliary problem (this 

will be the zeroth approximation of  the iteration process to be described). A rectangle with an edge crack exactly as in the 
formulated problem is cut out of  a plane M for which the solution q~o is known, and values of  the stresses on the boundary 

of  this rectangle, which are known from the solution ~o, are added with opposite sign to the boundary conditions of the 

original problem. The problem obtained is solved numerically by a finite difference method, and a certain stress field ~00 is 
found. To find the numerical solution of  the problem obtained with bounded continuous boundary conditions, the extended 
system of  equations of  plane elasticity theory was integrated 

OLjOx --t- (E/2(I -t- v))S = 0, 
OL~/Oy + (E/2(I q- v))S = O, OLJOy 4- OLJOx = O, 

where 

L1 ==- OciJOx 4- O%u/Og; L~ ~ &ru/Oy + O%u/Ox; 

S t -- v 2 0 ~ x  v (t -}- v) 0~% t -- ~20~u v (t -~- v) 0~%: 2 (l + v) O~'rxy 
~ Oy2 E Oy ~ ~ E Ox ~ E Ox 2 g OxOg " 

A finite-difference scheme in stresses of  the universal algorithm type was used to approximate this system, in combination 
with splitting and build-up methods: 

(i ~(2-~)All)(~.~(1-~)- ~ .+1 - - - .~ - - -  A22) ~ x ( I  q- x(2-- v) A,1) X 
2 = 

X (1 @ x ( 1 ;  v)A2e) on _}_ (t v) -- n+l -- ,,+1 X - -  T ] ~ I l I J y  - -  V T J ~ g 2 ( J g  

I , (1 - -  v)  A11  I - "r (2-- v) A2 ~ ou = I + An • 
2 2 

( ) . . . .  •  " (2 2 -- ~) A~z ~u --  v~A11o~ §  --  v) ~A-.2~, 

I -  -5- All I --  -5- a~e) ,,~u = I q- =2- An I -t- -~- A22 x:~ + xA,~ (o~ +a 4- ~+1) ,  
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Fig. 1 

where A l l  , A22, A12 approximate 02/Ox 2, 02/Og 2, OZ/(OxOg) in central difference formulas, r is the iteration parameter, 

n is the number of the iteration, I is the unit operator,  v is the Poisson ratio, and E is Young's modulus. This scheme was 
used earlier to solve plane problems of elasticity theory [3]. The stability of this scheme, was investigated by the Fourier  
method. I t  should be noted that  a similar scheme is presented in [8]. Combining the stress fields ~0 o and ~o'  we obtain 

the zeroth approximation to the solution of  the formulated problem with a factor K 0 for a singularity at the nose of the 

crack. We use the J-integral of  R ice -Cherepanov  [9, 10] to refine this factor and to go over to the next i teration 

= c)u dSI J . I ( W d g - - T ' T r  ], 
P 

where P is an arbitrary contour surrounding the vertex of  the crack, W is the strain energy density, and T, u are load and 
displacement vectors, respectively. For  plane strain J and K are connected by the relationship 

K 2 = [E/(t - -  v 2) ].jr. 

Evaluating the Rice -Cherepanov  integral for the stress field ~o + ~ along a contour sufficiently remote from the crack 

nose, we obtain the next approximation K~ of the stress intensity factor. Let us select a real number c~ such that  K 1 = 

O~Ko, and let us mult iply it by the analytic solution G o of the auxiliary problem. For  the auxiliary problem we obtain the 

stress field q~ =aq5 o with a factor K1 = a K  o for the singularity. Now, let us set the intensity factor K~ in the initial prob- 

lem for the rectangle with the edge crack (this is the next approximation of  the i teration process described). We then 

repeat the process of  extracting the singularities on the basis of  the exact auxiliary solution ~ .  An iteration process in 

the stress intensity factor has therefore been organized that terminates with the i-th iteration when the condit ion 
[Ki-1 - - K d <  e, is satisfied, where e is a previously assigned small number characterizing the accuracy of the iteration 

process constructed. 

In contrast  to known numerical methods of determining the stress intensity factor [ 1], this method in particular 
does not  require reducing the mesh size in the neighborhood of  the crack nose since iv.finite values of  the stress and large 
stress gradients are extracted by using the auxiliary exact solution. 

The singular solution for a rectilinear crack of a normal discontinuity in an infinite plane can be found by reduction 
to a boundary-value problem of the theory of  functions of a complex variable, called the problem of  a linear conjugate of  
boundary values, or the R i e m a n n - H i l b e r t  conjugate problem [4]. 

Let us examine two particular cases of the problem mentioned (two auxiliary analytic solutions), that will be used 
later in solving the original problem. 

1. According to [4], the stress components in the plane problem are expressed in terms of two functions of  a 
complex variable (b(z) and I2(z) by means of  the Kolosov-Muskhel ishvi l i  formulas: 

ax - t - gu -=41 teO(z ) ,  ( y ~ - - i T x y = q ) ( z ) @ f l ( z ) q - ( z - - z ) ~ r ( z ) .  

We obtain in the case of multilateral tension on a plane weN{ened by a rectilinear crack along the real axis 0 ~< x ~< 2a, 

35 = 0, when ~(oo)~ = (~(yoo) = p ,  .~(~)x~ = 0 at infinity and the crack edges are stress-free [4] 

O)(z) = f~ (z) = P(z - -  a ) / 2 - ~ -  2a). 

The stress intensity factor is 

2. Now, let us consider a semiinfinite crack 

in an infinite plane. We consider the stresses zero at infinity, and a normal Ioad to be given at the crack edges 
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TABLE 1 TABLE 2 

i 

4 
5 
6 
7 
8 
9 

t0 
1t 
i2 
13 
t4 
t5 

t 0,933109 t65,389 
2 0,957472 t58,355 
3 0,9734i7 i54,146 

0,983562 t5i,6i2 
0,989905 t50,08~ 
0,993826 i49,155 
0,996234 t48,593 
0,997706 t48,252 
0,998604 ~48,045 
0,999i5i i47,920 
0,999494 147,843 
0,999686 t47,79~ 
0,999809 i47,769 
0,999884 i47,752 
0,999930 147,74i 

t 
2 
3 
4 
5 
6 
7 
8 
9 

t0 
tt 
12 
t3 
t4 
t5 

K 

2,000084 70,90i 
i,382279 98,005 
1,t88028 ti6,433 
1,t02ii8 128,323 
t,058233 i35,795 
t,034097 t40,426 
t,020267 i43,276 
t,0i2t52 i45,0t3 
1,007325 146,075 
1,004429 t46,722 
i,002683 147,t15 

i,00t627 i47,355 
i,000987 ~47,500 
i/000600 147,587 
1,000364 t47,642 

where 

a:y ~'~ Txy  

O, x < a ,  x ~ 2 a ,  

g ( z ) =  ( ~ _ ~ ) ( z - 2 ~ )  a ~ x ~ 2 a ;  
1/~- , 

The symbols § and - denote the boundary values at the upper and lower edges of the crack. 

The stress intensity factor is 

(z --~) (z -- 2a) In 2a -- z | 

Then 

oa 

K =  r • d _ ~ d z =  
0 

Let us analyze evaluation of the Rice-Cherepanov J:mtegral written above. It  is convenient to select the perimeter o f  the 
rectangle displayed in Fig. 1 as the con tou rP .  In the Oxy plane the rectangle is the domain I - c ,  a] X [ - b ,  b]. The con- 
tour P is traversed counterclockwise. Let us divide it into six segments as is shown in Fig. 1. We represent the J-integral 
in the form of two integrals 

J" ~- J w  - -  J r ,  

where 

b 0 - -b  0 

r 0 b 0 - -b  1' 

Here the subscript on the W indicates the corresponding segment of the contour F. The strain energy density W is deter- 
mined from the formula  

t e W = - ~ - ( ~  ~ + 2~ys~u + %~y), 

where e x, ey, exy are the strain tensor components. 

The integral Jt is evaluated by the formula 

r 1 r~ r 6 

where 

T 1 = (~xex -~- Txy -~z; 

c~v 
T a  ~--- - -  crx~x - -  TxY 7z ;  

6 V  a P  

Oo Ov 
T 5 -~- - -  Tx~ex - -  (Yy ~ x '  T6 ~ ~x~x "-r" xy &v* 

To determine the derivative av/ax with respect to known stresses, and therefore, strains also, we use the relationship 
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There  results f rom symmet ry  condi t ions  that  the vert ical  displacements equal  zero on the con t inua t ion  o f  ~2ae crack 
in the original problem,  therefore,  the derivative 0v/bx is also zero. Taking this into account ,  the relations wri t ten down 
for  0v/0x can be integrated numerical ly  in the whole domain.  

An  electronic  c o m p u t e r  solut ion o f  the p rob lem is obta ined in dimensionless quanti t ies  denoted  wi th  the upper  bar, 
which are defined as fol lows 

where l is the characterist ic l inear dimension of  the domain.  The  upper  bar will later  be omi t t ed  over  the dimensionless 
quantit ies.  

Let  us select a mesh domain  approximat ing  the original domain.  Let  this be a un i fo rm mesh with  step h along x 
and along y: 

x~ = h i ,  i = - - p ,  - - p  + 1 , . . . ,  q - -  I ,  q, 

gj = h], ] = - - r ,  - - r  + 1 , . . . ,  r - -  1, r. 

The fol lowing boundary  condi t ions  are given for the numerical  solut ion o f  the p rob lem 

( o ~ ) - p , i = ( a x ) q , j = 0 ,  ] = - - r , . . . , r ,  

('c~)_~0# = (~xu)q.j = 0, ] = - -  r . . . . .  r, 

(~y)~.-~ = (~ )~ . r  = 0, i = - -  p . . . .  , q, 

0, i =  - - p ,  . . . ,  - - 3 , 3 ,  . . . ,  q, 
(%)~,-~. = (%)i,, = 1, i = - -  1, 0, 1, 

t /2 ,  i = - - 2 , 2 .  

The domain  dimensions were taken as p = q = r = 20, h = 0.025. Al loyed  steel with the elastic constants  v = 0.2875,  
E = 20,998.98 kg /mm 2 was taken as specimen material .  

The  initial p rob lem for a rectangle wi th  an edge crack was investigated in detail  by means of  the algori thm proposed.  
The fol lowing versions o f  this p rob lem were hence examined.  

1. The  first analyt ic  solut ion with  a load at inf ini ty  P = 100/E, a = 1 was taken as auxiliary problem.  The resuits 
are presented in Table  1, where i is the number  o f  the i terat ion,  K is the stress intensi ty  factor,  and the parameter  ~ is the 
ratio o f  two successive values o f  K. 

2. The  first analyt ic  solut ion with a load P = 20/E at infini ty was taken as the auxiliary problem. In this case the 
successive values o f  the intensi ty  factor  converged to the desired value f rom below (Table 2). 
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3. The second analytic solution, where a = 1, was taken as auxiliary problem. The value of  the stress intensity 
factor was 156.579 at the 15-th iteration, which is quite close to the intensity factor of  the first problem considered. 

The crack length was half the length of  a side of the square in all the problems listed above. 

4. A problem was examined when the crack length was 1/3 the length of a side of  the square: p = 26, q = 14, 
r = 20, and the boundary conditions in the initial problem were not  changed here. The value of the intensity factor at 
the 15-th i teration was K = 58.385. 

5. To investigate the question of  accuracy of  the method,  the following test problem was solved: Values of  the 
stresses on the outline of  a square were taken from the first analytic solution as boundary conditions. The intensity factor 

is ,known K = P-V-~a = t77.245 for P = 100, a = 1. The second exact (analytic) solution was taken as auxiliary solution. 

The value of  the stress intensity factor at the fifteenth iteration 186.921 differed by 5.64% from the actual value. 

Displayed in Figs. 2 4  are isobars of the functions ev/E, crffE, %v/E for a crack length of 1/2 the side of the 

square. A graph of the function oy/E for a crack length of  1/3 the side of  the square is presented in Fig. 5. The stresses o r , a x 

are symmetric relative to the Ox axis, and ~xy is anti-symmetric. Stress concentration is observed at the crack nose in all 

the graphs. All the stresses tend to infinity as the crack nose is approached. Because of technical difficulties in construct- 
ing the graphs in Figs. 2-5, the stresses at the crack nose were assumed limited although the method applied yields infinite 

values of  the stress at the nose. The function Oy in Fig. 5 is positive in the whole domain, reaches the greatest value at 

the crack nose, and there is also a local maximum in the neighborhood of  the external load application. The stresses 
ey in Fig. 2 decrease in going from the crack nose to the left side boundary,  and become negative in a domain adjoining 

the upper and lower bases, and positive in the central domain. I t  is seen that the stresses ey exceed, in absolute value, 

the stresses a x in the whole domain at corresponding points. 

We note that the graphs given here were constructed using the graph-drawing program BENSON OFF B-220 - a spec i a l  
implementat ion was designed for the BESM-6 computer  in the Computing Center of  the Siberian Branch of the Academy of  
Sciences of  the USSR; the program used a mathematical  method of graph construction. 
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EFFECT OF ANGLE OF ATTACK OF A METAL SURFACE 

ELEMENT ON THE ENERGY ACCOMODATION 

COEFFICIENT OF NITROGEN IONS 

V. A. Shuvalov UDC 533.932:533.601.18:539.198 

In computing aerodynamic characteristics and heat transfer for vehicles in free-molecular flow it is important to 
know the energy accommodation coefficient for incident stream particles and its dependence on the orientation of a 
surface element relative to the flow velocity vector. The literature does not have the required volume of information on 
the accomodation coefficient as a function of surface orientation for the particle energy range of practical interest, ~1-100 
eV. The present paper reports the dependence of the accommodation coefficient a. for nitrogen ions on the angle of 
attack of metal targets with atomic weight in the range 27 to 197, measured in a tdgh-speed rarefied plasma flow (uoo--- 10 
km/sec). 

The experimental investigations were conducted in a gasdynamic pIasma facility in a flow of partiaUy ionized gas, 
generated by an accelerator in which the working substance was ionized by an electron beam. The accelerated ion flux, of 
intensitY J~o-- 1017 ion/cm2osec was directed into the working chamber, where the residual gas pressure was ~7" 10 -7 -1"10 -6 

torr. The measurements were done at a working chamber pressure of ~(0.87-1.6)'10 -s torr. 

To measure the accommodation coefficient of the nitrogen ions we used a planar hot wire anemometer probe, in 
the form of a disk of thickness 6--- 0.12 mm with a working surface diameter of 3.5 mm, and with current leads and a thermo- 
couple attached to its back face. The lateral surface of the sensor, the thermocouple, and the current leads were insulated 
from contact with the ceramic plasma tube. 

A rake o f  sensors with working surfaces made of different materials was set up in the high-speed stream of rarefied 
plasma. The vol t -ampere  characteristics lg Ie = f(V) had a clearly pronounced straight-line section. Thus, we could deter- 

mine the electron temperature T e ~ 3.5-4.7 eV (W = 2kT e) by the usual method [1]. The plasma potential ~o was deter- 

mined by the second derivative method, and also from the electron part of the probe characteristic. This gave high accuracy 
in measuring the stream ion energy W i. The values of W i obtained agree satisfactorily with values found by use of a multi- 

electrode analyzer probe, and also with values calculated on the assumption that the accelerating potential is the difference 
between the source anode and the local plasma potential ~0 o. The scatter in the values of W i obtained does not exceed + 

4.5%. To check the local values of the flow operating parameters and the orientation of the sensors relative to the flow 
vector u~o we used a slender cylindrical probe made of molybdenum wire of diameter 0.09 and length 4.0 ram. The peak 

ion current measured by this probe, when rotated about horizontal and vertical axes, corresponds to the probe orientation 
in the flow [2], and allows an estimate to be made of the degree of nonisothermality of the flow Ti/T ~ =~ 0.13. 

The ion energy accommodation coefficient ai  was determined, using the technique of [3], from the relation 

Iix--~- {~ + ai (W~ + e I VA[) --  7~• + @ (W~ q- • = @ (We + • + e [ VB[ ), (1) 
e 
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